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Abstract. We present a numerical study of conductance oscillations of transition metal
multilayers as a function of layer thickness. Using a realistic material-specific tight-binding
model, we show that for disorder-free layers with random thicknesses but clean interfaces,
long-period oscillations in the conductance can occur, which are reminiscent of those found
in structures exhibiting GMR. Using a heuristic effective mass model, we argue that these
oscillations arise from beating between the Fermi wavevector and a class of wavevectors
characteristic of the superlattice structure.

Oscillations in transport properties of metallic superlattices have been largely studied in
magnetic–non-magnetic multilayers, which exhibit giant magnetoresistance (GMR), both
from an experimental [1–3], and a theoretical [4–8] point of view.

Recently a new set of measurements on Ni–Co [9–13], multilayers revealed the
possibility of long-period oscillations of a different origin, whereas, measurements on Ag–
Pd [13], Ag–Au and Ag–Cu [14] multilayers have not shown long-period oscillations. On
the one hand, the Ag based multilayers are entirely non-magnetic. On the other, the Ni–
Co multilayers were measured in high magnetic field, far above the coercive field of the
structure, which rules out magnetic misalignment between magnetic layers as the source
of the oscillations. In these experiments, all the measurements were conducted with the
current in plane (CIP) configuration and to-date, no measurements have been carried out in
the current perpendicular to the planes (CPP) configuration.

In this letter we predict that such oscillating behaviour can also occur with the CPP,
in clean superlattices with very good interfaces, but where the layer thickness fluctuates
randomly. Moreover this can explain the absence of such oscillations in the experiments
on Ag–Pd [13], Ag–Au and Ag–Cu [14]. To the best of our knowledge this is the first time
that long-period conductance oscillations in the CPP configuration have been identified in
realistic calculations for such systems.

To address this problem, we have developed a very efficient technique to calculate
transport properties of a finite multilayer attached to semi-infinite pure crystalline leads,
as sketched in figure 1. The technique, which will be discussed in detail elsewhere [15],
is very general and can be readily applied to a wide range of GMR multilayers, or TMR
spin valves [16, 17]. Our calculations are based on the Landauer–Büttiker formalism [18],
using s–p–d tight-binding Hamiltonians with nearest-neighbour hopping, which reproduce
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accurately the band structure of the materials considered [19]. The conductance0σ of a
given spin species is obtained from the Landauer formula [18]

0σ = e2

h
T σ (1)

whereT σ is the total transmission coefficient for the spinσ (σ =↑,↓) calculated at the
Fermi energy. The latter is obtained by extracting theS matrix from the total Green
functionG of the superlattice in contact with external leads. The total Green function is
calculated via Dyson’s equation, starting from the surface Green functiong of the leads
and an effective HamiltonianHeff describing the finite multilayer. In all the following
calculations we consider a perfect lattice match between clean fcc layers and hencek‖ is a
good quantum number (the symbol‖ represents the in-plane coordinates and the symbol⊥
the direction of the current perpendicular to the planes). The Hamiltonian is diagonalized
in the Bloch basis to yield

0σ =
∑
k‖

0σ (k‖) = e2

h

∑
k‖

T σ (k‖) (2)

where the sum overk‖ extends over the two dimensional Brillouin zone. In what follows, we
employ of order 104 k‖-points, which is sufficient to render effects due to the finite number
of k‖-points negligible compared with the oscillations of interest. In what follows, for Ni–
Co and Ag–Pd multilayers, we calculate the total conductance of the two independent spin
channels as a function of layer thickness, in the limit that the spin-flip and phase-breaking
lengths are infinite. It should be noted that the majority bands of Ni and Co are s–p-like and
are closely aligned. On the other hand the minority bands are d-like and possess a relative
shift in energy of about 0.7 eV. Hence we expect a large contribution to the conductance
from the majority channel and a small contribution from the minority channel. For Ag–
Pd the situation is qualitatively different, because at the Fermi energy the DOS of Ag is
dominated by s–p electrons, while in Pd it is dominated by d electrons. As a consequence
one expects strong interband scattering at the interfaces between the different metals.
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Figure 1. Finite multilayer connected to pure crystalline semi-infinite leads.g are the surface
Green functions describing the leads andHeff is the effective Hamiltonian describing the
multilayer.

Following reference [5], we consider a pseudorandom layer arrangement, in which a
finite A–B multilayer, attached to semi-infinite leads of material A, possesses B-layers of
fixed thicknesslB and A-layers of random thicknesseslA which are allowed to fluctuate by
±1 atomic plane (AP) around a mean valuel̄A (with equal probability forl̄A, l̄A ± 1). In
all the following simulations, we consider multilayers consisting of 10 A–B bilayers and



Letter to the Editor L693

for eachlB, show results for the average conductance of 10 random configurations of the
A-layers.

For Ni–Co and Ag–Pd respectively, figures 2 and 3 show the mean conductance as a
function of lB, along with error bars for the standard deviation in the meanσm. While the
latter is smaller than the underlying conductance variation, it should be noted that this is not
the case for the standard deviationσ in the distribution of individual conductances, which for
an ensemble ofm realisations satisfiesσm ∼ σ/

√
m, wherem = 10 for figures 2 and 3. For

smallm, σ is of the order of the conductance fluctuations themselves, thereby masking any
underlying trend. In experiments involving a large numbern of bilayers, such that the total
lengthl = n(lA+ lB) is larger than the phase-breaking lengthlφ (due to incoherent scattering
processes), the sample may be viewed as comprisingl/ lφ samples in series and therefore
the total resistance is the sum ofl/ lφ statistically independent resistances. This suggests
that multilayers with large number of bilayers are needed in order to detect reproducible
conductance oscillations, as indicated by several experiments [9–13]. The figures suggest
the presence of long-period oscillations on a scale greater than the atomic spacing, with
amplitudes not exceeding 25% of the mean conductance. Moreover the Ni–Co system
shows smaller oscillations than the Ag–Pd system, and despite the fact that the conductance
of the majority spin channel is almost double that of the minority, the oscillations arise
predominantly from the minority spins, where the scattering is strongest.
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Figure 2. Conductance of Ni–Co multilayers as a function of the Ni thickness. The Co thickness
is 10 atomic planes. The inset shows the two spin conductances on the same scale with the
upper plot for majority spin and the lower for minority spin. The error bars correspond to the
root-mean-square deviation of the mean.

To understand how quantum interference of the conduction electron wave-functions
might give rise to long period oscillations, and to check the consistency of the tight-
binding calculations, we now develop a heuristic continuum model, within the effective
mass approximation, describing an infinite 3D superlattice with a Kronig–Penney potential
and a parabolic band. The spin-dependent Hamiltonian for such a system is

Hσ(r) = −h̄
2

2

[
∇2
xy

m∗(z)
+ ∂

∂z

1

m∗(z)
∂

∂z

]
+ V σ (z) (3)
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Figure 3. Conductance of Ag–Pd multilayers as a function of the Pd thickness with an average
Ag thickness of 5 atomic planes.

where∇2
xy is the 2D Laplacian. Since the structure of figure 1 possesses translational

invariance in the x–y directions, the spin-dependent Kronig–Penney potentialV σ (z) and
the effective massm∗(z) are functions ofz only. Consequently the problem can be mapped
onto ak‖-dependent 1D problem, whose Hamiltonian is

Hσ(z; k‖) = −h̄
2

2

d

dz

1

m∗(z)
d

dz
+ h̄2k2

‖
2m∗(z)

+ V σ (z). (4)

For eachk‖ and spinσ , an eigenstate at the Fermi energy contributese2/h to the conductance
of this infinite periodic structure. In the general case, the eigenstates can be obtained
numerically using standard transfer matrix techniques. First consider the case of constant
m∗(z), where the problem can be solved analytically. Since the Hamiltonian (4) depends on
k‖ only through an energy shift, one finds that the conductance per unit area has the simple
form

0 = 8πe2m∗

h3
1 = 8πe2m∗

h3

∑
n

1n (5)

where1n is the bandwidth of thenth energy band of the Hamiltonian

Hσ(z) = − h̄2

2m∗
d2

dz2
+ V σ (z) (6)

and the sum is over all occupied minibands. The form (5) assumes an infinite cross section
(constant DOS in the transverse direction), which is a good approximation to the finite
cross sections considered (∼ 200 Å × 200 Å). Consider an infinite superlattice composed
of materials A and B, with layer-thicknesseslA and lB (lA + lB = L), and Kronig–Penney
potentialV = Vo (EF > Vo) in the metal A andV = 0 in the metal B. Ifk⊥ is the Bloch
vector in the direction of the current, the secular equation is

cos(k⊥L) = cos(kA lA + kBlB)− (kA + kB)
2

kAkB
sin(kA lA) sin(kBlB) (7)
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with kA(E) =
√

2m∗(E − Vo)/h̄ and kB(E) =
√

2m∗E/h̄. Based on this expression, we
now argue that the bandwidths exhibit several periods of oscillation as the layer thicknesses
are varied.

To describe Ni–Co multilayers, we vary the thickness of metal B keeping the thickness
of metal A fixed. To understand the oscillatory behaviour of the bandwidths, we note that
equation (7) cannot be satisfied at energies for which

kA(E)lA + kB(E)lB = mπ (8)

wherem is an integer. Hence atE = EF and fixedlA, successive bandgaps appear at the
Fermi energyEF when lB changes by

lmB =
π

kB(EF)
m = πh̄√

2m∗EF
m = lFBm. (9)

Equation (9) introduces the first period of oscillationlFB. The second period corresponds to
the presence of narrow gaps below the Fermi energy. From equations (7) and (8) narrow
bandgaps appear at the energies

E
(n)
A =

h̄2π2n2

2m∗l2A
+ Vo (10)

whenever the lengthslB equal

l
(n)
B =

πh̄√
2m∗E(n)A

. (11)

The total bandwidth1 and hence the conductance per unit of area (5) are oscillating
functions with periodslFB and thel(n)B . All these periods are of orderλF (i.e. few Å), but
beating between them can give rise to long-period oscillations. It is important to note that
the Fermi period is defined only through the Fermi energy, while the periodsl

(n)
B depend

critically on the superlattice geometry. In particular, because the energies corresponding
to periods (10) depend on 1/l2A and must not exceed the Fermi energy, the number ofl

(n)
B

depends on the thickness of the metal A. IflA is large, a large number ofl(n)B periods will
be present and the beating pattern will be complex. On the other hand, iflA is small,
few l

(n)
B will be present, giving rise to a simple beating pattern. A numerical evaluation

of equation (5) is shown in figure 4. For the chosen parameter in this plot, we expect
only one l(n)B and clear beats are observed, with period 2l

(1)
B lFB/(l

(1)
B − lFB). Since thel(n)B

periods are characteristic of the superlattice structure we predict that the period of the long
oscillations can be set by choosing the appropriate superlattice geometry. Of course in a real
superlattice, the B-metal thickness can only be changed in units of the interatomic spacing.
The solid dots in figure 4 highlight the conductances associated with such a discrete set of
thicknesses.

The above dependence of oscillations on the multilayer structure is missed by a trilayer
quantum well approach to conductance oscillations and GMR [20], where only two periods
have been identified. The first of thesepFS depends on the extremal Fermi surface radius of
the spacer forming the well, and in the parabolic band approximation corresponds exactly
to the periodlFB. The second periodpcp depends on the cut-off of the sum over thek‖ and in
the parabolic approximation, on the energy difference between the Fermi energy and the step
potentialVo. In our superlattice description, this period is replaced by the class of periods
l
(n)
B , which are a function of the superlattice structure itself. This structural dependence

of the oscillation periods is the key to understanding the apparent non-reproducibility of
the long period oscillations from sample to sample, observed in some of the experiments
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Figure 4. Conductivity per channel in the effective mass approximation. The parameters are
EF = 10 eV,Vo = 6 eV,m∗ = 0.5 MeV, lA = 8 Å.

[14]. For those cases where we expect the mass to be significantly different in the two
materials (e.g. mainly s–p-like in one material and mainly d-like in the other) we have
shown that the Kronig–Penney model reproduces the main features of the more accurate
tight-binding model, with physically reasonable choices of the band offsets and effective
masses. Furthermore figures 2 and 3 demonstrate that these beating features are preserved
when a more realistic material-dependent effective mass is used.

Bearing in mind that our analysis describes the CPP configuration, we can also speculate
on the absence of the oscillations in other recent experiments [14, 13]. Ag–Cu [14] exhibits
very good phase separation between the different metals and hence it should be a good
candidate for observing conductance oscillations. However the band match between Ag
and Cu is very good, resulting in a very small scattering potential at the interface. In the
effective mass approach this means a very small step potentialVo with respect to the Fermi
energy. A large number of periodsl(n)B will be present and the beats will be difficult to detect.
The same argument is valid for Ag–Au [14]. In addition the high miscibility of Ag and Au
results in dirty interfaces. Ag–Pd [13] is in theory a good candidate to show conductance
oscillations because of the large mismatch between the Ag and Pd bands. Unfortunately
interdiffusion at the interface is difficult to avoid and the elastic mean free path will be
quite short. Finally, we observe that for Ni–Co [9–12, 14], the majority band reproduces
roughly the situation of Ag–Cu, while the scattering in the minority band is quite large.
According to the effective mass model the minority band will possess a low conductance
with large oscillations, while the conductance of the majority band will be large and the
oscillations small. This is precisely what we obtain from the material-specific tight-binding
calculations. The absence of oscillations found in [14] for Ni–Co multilayers may be due to
the diffusive nature of the multilayers. In fact in such experiments the resistances involved
are about five times larger than the ones of [9–12], and the mean free path is much shorter.
This suggests that the transport is not only non-ballistic, but also that the absolute error
in the resistance measurements may become comparable to the observed magnitude of the
oscillations.
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In summary, we have investigated the possibility of large amplitude long-period
oscillations in metallic superlattices in the ballistic regime. Accurate tight-binding
calculations with the current perpendicular to the plane and superlattices with pseudorandom
layer thicknesses, suggest the possibility of such oscillations. An effective mass analysis
provides a qualitative understanding of the nature of the oscillations and highlights their
dependence on the superlattice geometry. We have shown that an infinite multilayer differs
significantly from a trilayer. In the latter the oscillations depend only on the band structure
of the materials, while in the former there is also a dependence on the multilayer geometry.
The number of the characteristic oscillation periods is different in the two cases, because the
trilayer oscillations depend only on the Fermi surface, while in a superlattice these depend
also on the superlattice period.

The authors wish to acknowledge Professor Ivan Schuller for valuable discussions and
details of the experiments [9–12]. This work is supported by the EPSRC and the EU TMR
Programme.
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